Next Generation Software Development

Final Report
ARO Contract DAAD 19-01-1-0723
Period covered: 08/01/01 - 01/31/05

P.1.: Prof. Zohar Manna
Computer Science Department
Stanford University
Stanford, CA. 94305-9045

DISTRIBUTION STATEMENTA
Appr;wed for Public Release
Distribution Unlimited

April 2005

20050711 110

Contents

1 Statement of the Problem Studied

2 Summary of Results

2.1 Static Analysis e e e e e e e e
2.1.1 Invariant Generation
2.1.2 Termination Analysis
2.1.3 Static AnalysisTools

2.2 Dynamic Analysis 0.

2.3 Computational Models

2.4 Decision Procedures

25 CaseStudies: CARA

2.6 Tool Development: STeP + AutoFocus.

3 Publications
3.1 Journal papers« . i
3.2 Conference papers« v v v vt v it e
3.3 Manuscripts Submitted,

4 Scientific Personnel

10
10
10
11

13

1 Statement of the Problem Studied

Under this grant we have studied the development of a scientifically sound
basis for software development that builds on widely used pragmatic meth-
ods but is firmly grounded in well-established formal domains such as first-
order logic and automata theory. To be sufficiently expressive for software
systems, the work has focused on methods applicable to infinite-state sys-
tems. Traditionally methods for infinite-state systems have been expensive,
because they were mainly deductive and thus required guidance by users
who were both experts in the application domain and in the verification
methodology.

Our research has been directed at algorithmic-deductive techniques that
separate the combinatorial reasoning from reasoning about the data. These
methods often limit user input to providing abstract system models and
application-level guidance, making the interaction more natural to software
developers. Constructed proofs hide low-level details; instead, they reason
at the most appropriate level of abstraction with respect to the properties to
be proved. This characteristic of proofs make them suitable as system doc-
umentation that can evolve with the system. To ensure well-defined seman-
tics, computational models were developed for new computing paradigms,
including aspects of publish-subscribe systems and middleware design pat-
terns.

2 Summary of Results

2.1 Static Analysis

We have made significant contributions to the automatic construction of
proofs of sequential and reactive systems by developing a new approach to
invariant generation and program termination analysis.

2.1.1 Invariant Generation

Generating system invariants is one of the most important components of
any verification methodology. In addition, invariants provide insight into
the system. Invariant generation has been studied extensively for several
decades. The traditional approaches have relied on forward propagation in
an abstract interpretation framework. Starting from the initial condition,
symbolic simulation is performed in an abstract domain until a fixed point
is reached. The fixed point is the most precise invariant of the system rep-
resentable in the abstract domain chosen. For the most popular abstract
domains, however, convergence may not be reached in a finite number of
steps, and one has to resort to widening to force convergence, thereby mak-
ing the invariant less precise and potentially trivial. Despite much study,
widening has remained an art more than a science, with little control of the
user over the resulting precision, and often unpredictable results in practice.

The approach that we have developed addresses these problems by posing
the invariant-generating problem as a constraint-solving problem [CSS03].
The conditions for an expression of a certain type to be an invariant are
encoded as a constraint system and the solutions of this constraint system
represent all invariants of that type. This constraint-based approach has
several advantages over the traditional approach, especially for software en-
gineering practice.

Controlling Complexity Invariant generation is inherently a hard prob-
lem with high complexity. With our method, however, the user can
make deliberate choices how to trade off precision versus complexity
by choosing the shape of the target invariant and strengthening the
conditions on the properties to be found. In the traditional approach
user control essentially ends with the choice of the abstract domain.
Also, our approach allows exploitation of additional structure in the
system to reduce the complexity of the constraint solving. For exam-
ple in [SSMO03] we showed that systems presented as Petri nets gave
rise to linear constraint systems rather than nonlinear ones.

New Abstract Domains In the traditional approach invariant generation
was studied mostly in the abstract domain of linear inequalities. At-
tempts to extend it to other domains were largely unsuccessful. With
our constraint-based approach, however, target template invariants
can be chosen in any domain that allows the encoding of the conditions
in a (decidable) constraint system. For example, we have succeeded in
generating nonlinear invariants (polynomial equalities) [SSM04] and
are currently investigating application to recursive datatypes. In soft-
ware engineering practice this approach creates the opportunity to
develop invariant generating methods specialized for the application
and its specific data structures. :

New Target Properties Traditional invariant generation methods are by
their very nature, forward symbolic simulation, limited to generating
invariants. In the constraint-based approach, any property that can
be encoded as a constraint system can be generated. For example, we
have applied exactly the same techniques to the generation of ranking
functions, described below. In software engineering practice, this can
easily be extended to application-specific properties. We are currently
developing methods to generate verification diagrams automatically.

Constraint Solvers as Engines The main bottleneck in the constraint-
based approach is the complexity of solving the constraints. Constraint-
solving, however, is an independent and very active area of research
with many other applications. The advantage of the constraint-based
approach is that any advances in constraint solving can directly be ex-
ploited by our methods. Stronger constraint solvers translate directly
into improved precision and increased scalability.

2.1.2 Termination Analysis

Guaranteed termination of program loops is necessary in many settings,
such as embedded systems and safety critical software. Although termina-
tion analysis methods have been studied extensively in logic and functional
programming and term rewriting systems, termination of imperative pro-
grams had, until recently, received little attention.

Over the last four years we have developed a systematic, constraint-based
approach towards termination analysis of imperative programs [CS01, CS02,
BMSO05]. In general, termination of loops is proved by exhibiting a rank-
ing function, that is, a function that is well-founded and decreasing with
each pass through the loop. We have developed methods for automatically

synthesizing such ranking functions. Like for invariant generation, the condi-
tions for expressions of a certain type to be a ranking function are encoded
as a constraint system. If the resulting constraint system is satisfiable, a
ranking function exists, and hence the loop has been proved to terminate.
Unlike for invariant generation, the constraint systems generated for ranking
functions are linear, and hence can be solved very efficiently. Therefore this
method scales remarkably well. We have demonstrated our methods on tens
of thousands of lines of code, with analysis times on the order of seconds.

2.1.3 Static Analysis Tools

The lack of integration between prototype implementations of results of re-
search blocks progress toward direct application of formal methods research
in software engineering settings. We have surveyed a host of tools, exam-
ining how their integration would increase their power and benefit future
research and application [BSSM04].

2.2 Dynamic Analysis

Although static analysis methods have improved considerably, in many cases
they still do not scale to large software projects. A practical alternative
is then to do dynamic analysis, that is, to monitor the running program.
Another situation in which dynamic analysis may be the only option is when
the program must run in an environment that does not tolerate violations
of the specification, but the source code is not available for inspection for
proprietary reasons or due to outsourcing.

Dynamic analysis tends to have lower complexity than static analysis,
because runs of the system are analyzed individually, while with static anal-
ysis all (usually infinitely many) possible runs must be covered. We have
developed efficient methods for runtime verification based on alternating au-
tomata [FS04, FSS02]. These methods are not limited to checking temporal
properties, but can also collect runtime statistics. These statistics are useful
as early warnings of impending problems in performance and resource usage.

Dynamic analysis methods can also be used as an alternative to test-
ing. In collaboration with Synopsys we have developed a specification lan-
guage and algorithms for the online and offline monitoring of synchronous
systems including circuits and embedded systems [DSS*05]. The specifica-
tion language can describe both correctness/failure assertions and statistical
measures that are useful for system profiling and coverage analysis.

2.3 Computational Models

New computational paradigms require well-defined computational models as
a basis for reasoning about systems developed according to these patterns
and principles. Often, new paradigms emerge and are adopted because they
are found to solve recurring problems conveniently. Modeling and anal-
ysis come afterward. We have modeled and analyzed the following new

paradigms:

Aspect-oriented programming Aspect-oriented programming [KLM197]
allows component-based development with orthogonal concerns such
as security or concurrency control developed and incorporated sepa-
rately. We developed a computational model for aspect-oriented con-
struction of reactive systems, which allows analysis of preservation
of temporal properties [Sip03] based on early work in this area by
Katz [Kat93].

Publish-subscribe Systems The publish-subscribe paradigm has emerged
as a convenient architectural principle to construct large loosely-coupled
distributed systems. Components publish messages to the middleware,
which distributes them to components that have expressed interest by
means of subscriptions. Subscriptions can be in the form of simple
filters or as more complex temporal patterns, also known as event cor-
relation expressions. In safety critical systems, but also in many other
systems such as stock-trading systems, it is essential that all relevant
messages are delivered to their target audiences. Practical experience
with a popular, open-source middleware platform showed that it is
extremely hard to get the semantics of an event-correlation service
correct without a very careful analysis.

We developed an event-correlation language and defined its operational
semantics in terms of concurrent automata [SSS+03]. This semantics
not only allows analysis of event correlation expressions [SSSM05], but
also enables automatic synthesis of the the correlators to be embedded
in the middleware, thus obtaining correct-by-construction implemen-
tations.

Design Patterns Design patterns [GHJV95] provide schematic, informal
solutions to frequently occurring problems in software development.
Formalizing such patterns is an important first step in enabling for-
mal analysis of various aspects of systems developed according to these

patterns. Together with middleware experts from Washington Univer-
sity in St Louis, we formalized one such design pattern for middleware
systems, known as WaitonConnection [SSRB00]. We modeled remote
invocations handled in accordance with this pattern and analyzed re-
source requirements and potential for deadlock for different thread
allocation protocols [SSS*05]. This formalization can serve as an ex-
ample for modeling other design patterns.

2.4 Decision Procedures

Efficient decision procedures are the cornerstone of every verification sys-
tem. Decision procedures for individual theories, however, are of limited use
in verification and especially in software verification, because most verifica-
tion conditions involve data types that span multiple theories, for example
recursive data types combined with integers.

We have developed combination methods for various data types with in-
tegers, including recursive data types and queues [ZSM04a, ZSM04b, ZSM05].

2.5 Case Studies: CARA

Automation of medical devices can save lives. It can assure continuous mon-
itoring and control and consistent care when trained medical personnel is
not available or in short supply. On the other hand, errors in the software or
missed conditions can be fatal. The Food and Drug Administration (FDA)
has the task to determine whether a medical device is safe for deployment.
Currently this is done by extensive review of the development and testing
process; no formal verification is mandated to obtain approval.

As software gets more and more complex there is a feeling that the
current review process may not be adequate, and more formal techniques are
called for. The CARA case study was initiated by the FDA, in collaboration
with the Army Research Office, to assess the feasibility of doing formal
verification for such a device

The CARA case study concerns a computer-assisted resuscitation pump
used to provide fluids to people who suffer severe loss of blood, to stabilize
their blood pressure until more permanent remedial actions such as surgery
can be provided. The device was developed by the Walter Reid Army Insti-
tute of Research (WRAIR) in Silver Spring, MD.

We were provided with a set of tagged requirements, developed by med-
ical experts at WRAIR. The same document was also given to the software
engineers charged with developing the software. We participated in several

meetings and rounds of questions and answers with the medical expert and
software engineers at WRAIR.

We modeled the system using clocked transition systems [MP95, KMP96,
KMP98], an extension of fair transition systems to account for continuous
real time. In the course of modeling this system we added several constructs
to make the description more natural. Clocked transition systems are a very
expressive model, and thus most questions about them are undecidable.
However, the model under construction did not use the full expressiveness,
and thus we were able to specialize our analysis techniques for this case,
up to the point where model checking could be used for some of it. The
analysis techniques were implemented in our verification tool STeP (Stanford
Temporal Prover) [BBC*00].

2.6 Tool Development: STeP + AutoFocus

We have collaborated with researchers from the group of Prof. Manfred
Broy of the Technical University of Munich on the integration of STeP with
AutoFocus. Dr. Heiko Lotzbeyer and Alexander Wisspeintner from the
Technical University of Munich visited SRI and Stanford for several weeks.
We explored the integration of design and verification models between Auto-
Focus [HSSS96] and STeP [BBC*00]. We translated an existing AutoFocus
model into STeP, while carefully considering both the structural and the
behavioral aspects of the model. Extra variables had to be introduced to
preserve the structural view, consisting of a network of components con-
nected by communication channels, and its execution semantics. The be-
havioral view could directly be modeled by STeP transition systems, with
the addition of a global clock to maintain the discrete time semantics of
AutoFocus.

]

3 Publications

3.1

1.

Journal papers

Bernd Finkbeiner and Henny B. Sipma. Checking finite traces using
alternating automata. Formal Methods in System Design, 24:101~
127, 2004. A preliminary version appeared in Runtime Verification
(RV’01), Electronic Notes in Theoretical Computer Science, Vol 55,
No. 2, pp. 44-60, Elsevier Science Publishers (2001).

Conference papers

Michael Colén, Sriram Sankaranarayanan, and Henny Sipma. Linear
invariant generation using non-linear constraint solving. In Computer
Aided Verification, volume 2725 of LNCS, pages 420-433. Springer-
Verlag, July 2003.

Michael Colén and Henny Sipma. Practical methods for proving pro-
gram termination. In Proc. 14** Intl. Conference on Computer Aided
Verification, volume 2404 of LNCS, pages 442-454. Springer Verlag,

2002

. Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma. Col-

lecting statistics over runtime executions. In Klaus Havelund and
Grigore Rosu, editors, Proc. of Runtime Verification 2002, volume 70
of Electronic Notes in Theoretical Computer Science, pages 36-55. El-
sevier Science Publishers, 2002. Accepted for publication in Formal
Methods in System Design.

Zohar Manna and Calogero Zarba. Combining decision procedures. In
Bernhard K. Aichernig and Tom Maibaum, editors, Formal Methods at
the Crossroads: From Panacea to Foundational Support, volume 2757
of LNCS, pages 381-422. Springer Verlag, 2003.

Cesar Sanchez, Sriram Sankaranarayanan, Henny B. Sipma, Ting Zhang,
David L. Dill, and Zohar Manna. Event correlation: Language and ¢
semantics. In Embedded Software (EMSOFT), volume 2855 of LNCS,
pages 323-339, 2003.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Petri
net analysis using invariant generation. In Nachum Derschowitz, ed-
itor, Verification: Theory and Practice, volume 2772 of LNCS, pages
682-701, Taurmina, Italy, 2003. Springer Verlag. '

10

10.

11.

12.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Constraint-
based linear relations analysis. In 11** Static Analysis Symposium
(SAS’2004), volume 3148 of LNCS, pages 53-68. Springer-Verlag,
2004.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-
linear loop invariant generation using Grobner bases,. In 31th ACM
Symp. Princ. of Prog. Lang., pages 318-329, Venice, Italy, January
2004.

. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scal-

able analysis of linear systems using mathematical programming. In
Radhia Cousot, editor, Proc. of Verification, Model Checking and Ab-
stract Interpretation (VMCAI), volume 3385 of LNCS, Paris, France,
January 2005. Springer Verlag.

Henny B. Sipma. A formal model for cross-cutting modular transi-
tion systems. In Gary Leavens and Curtis Clifton, editors, Proceed-
ings of the Workshop on Foundations of Aspect-Oriented Languages
(FOAL’03), pages 9-16, 2003.

Ting Zhang, Henny Sipma, and Zohar Manna. Decision procedures
for recursive data structures with integer constraints. In the 2™¢ In-
ternational Joint Conference on Automated Reasomning (IJCAR’04),
volume 3097 of LNCS, pages 152-167. Springer-Verlag, 2004 (Best
Paper Award).

Ting Zhang, Henny Sipma, and Zohar Manna. Term algebras with
length function and bounded quantifier alternation. In the 17" In-
ternational Conference on Theorem Proving in Higher Order Logics
(TPHOLs’04), volume 3223 of LNCS, pages 321-336. Springer-Verlag,
2004.

Manuscripts Submitted

1. Ben D’Angelo, Sriram Sankaranarayanan, César Sanchez, Will Robin-

son, Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehrotra, and Zo-
har Manna. Lola: Runtime monitoring of synchronous systems. In
TIME’05, 2005. To appear.

Aaron R. Bradley, Henny B. Sipma, Sarah Solter, and Zohar Manna.
Integrating tools for practical software analysis. In Proc. of the Mon-

11

terey Workshop. Software Engineering Tools: Compatibility and Inte-
gration, 2004. To appear.

. Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear ranking
with reachability. In Proc. 17** Intl. Conference on Computer Aided
Verification, LNCS. Springer Verlag, 2005. To appear.

. César Sanchez, Henny B. Sipma, Matteo Slanina, and Zohar Manna.
Final semantics for event-pattern reactive programs. In CALCO’05,
2005. To appear. ~

. César Sanchez, Henny B. Sipma, Venkita Subramonian, Christopher
Gill, and Zohar Manna. Thread allocation protocols for distributed
and real-time and embedded systems. 2005. Submitted.

. Ting‘ Zhang, Henny Sipma, and Zohar Manna. Decision procedures
for queues with integer constraints, 2005. Submitted.

12

4 Scientific Personnel

The following people have been involved with the project:

Prof. Zohar Manna (P.I.)

Dr. Henny B. Sipma (Sr. Research Associate)
Dr. Bernd Finkbeiner (PhD, 2002)

Dr. Michael Colon (PhD, 2003)

Dr. Calogero Zarba (PhD, 2004)

Ben D’Angelo (undergraduate student)
Aaron Bradley (PhD student)

César Sanchez (PhD student)

Sriram Sankaranarayanan (PhD student)

13

References

[BBC100]

[BMS05]

[BSSM04]

[CS01]

[CS02]

[CSS03)

[DSS+035)

[FS04]

Nikolaj S. Bjgrner, Anca Browne, Michael Colén, Bernd
Finkbeiner, Zohar Manna, Henny B. Sipma, and Tomds E.
Uribe. Verifying temporal properties of reactive systems: A
STeP tutorial. Formal Methods in System Design, 16(3):227-
270, June 2000.

Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Lin-
ear ranking with reachability. In Proc. 17" Intl. Conference on
Computer Aided Verification, LNCS. Springer Verlag, 2005. To
appear.

Aaron R. Bradley, Henny B. Sipma, Sarah Solter, and Zohar
Manna. Integrating tools for practical software analysis. In
Proc. of the Monterey Workshop. Software Engineering Tools:
Compatibility and Integration, 2004. To appear.

Michael Colén and Henny Sipma. Synthesis of linear ranking
functions. In Tiziana Margaria and Wang Yi, editors, 7th Inter-
national Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 2031 of LNCS,
pages 67-81. Springer Verlag, April 2001.

Michael Colén and Henny Sipma. Practical methods for proving
program termination. In Proc. 14** Intl. Conference on Com-
puter Aided Verification, volume 2404 of LNCS, pages 442-454.
Springer Verlag, 2002.

Michael Colén, Sriram Sankaranarayanan, and Henny Sipma.
Linear invariant generation using non-linear constraint solving.
In Computer Aided Verification, volume 2725 of LNCS, pages
420-433. Springer-Verlag, July 2003.

Ben D’Angelo, Sriram Sankaranarayanan, César Sinchez, Will
Robinson, Bernd Finkbeiner, Henny B. Sipma, Sandeep Mehro-
tra, and Zohar Manna. Lola: Runtime monitoring of syn-
chronous systems. In TIME’05, 2005. To appear.

Bernd Finkbeiner and Henny B. Sipma. Checking finite traces
using alternate automata. Formal Methods in System Design,
24:101-127, 2004. A preliminary version appeared in Runtime

14

[FSS02]

[GHIV95)

[HSSS96]

[Kat93]

[KLM+97]

[KMP96]

[KMPY8]

Verification (RV’01), Electronic Notes in Theoretical Computer
Science, Vol 55, No. 2, pp. 44-60, Elsevier Science Publishers
(2001).

Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny Sipma.
Collecting statistics over runtime executions. In Klaus Havelund
and Grigore Rosu, editors, Proc. of Runtime Verification 2002,
volume 70 of Electronic Notes in Theoretical Computer Science,
pages 36-55. Elsevier Science Publishers, 2002. Accepted for
publication in Formal Methods in System Design.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns. Elements of Reusable Object-Oriented
Software. Professional Computing Series. Addison Wesley, 1995.

Franz Huber, Bernhard Schitz, Alexander Schmidt, and Katha-
rina Spies. AutoFocus - a tool for distributed systems spec-
ification. In Proceedings FTRTFT’96 - Formal Techniques in
Real-Time and Fault-Tolerant Systems, number 1135 in LNCS,
pages 467-470. Springer Verlag, 1996.

Shmuel Katz. A superimposition control construct for dis-
tributed systems. ACM Trans. Prog. Lang. Sys., 15(2):337-356,
April 1993.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.M. Loingtier, and J. Irwin. Aspect-oriented programming. In
Proceedings of the European Conference on Object-Oriented Pro-
gramming (ECOOP), volume 1241 of LNCS. Springer-Verlag,
1997.

Yonit Kesten, Zohar Manna, and Amir Pnueli. Verifying clocked
transition systems. In Rajeev Alur, Thomas A. Henzinger, and
Eduardo D. Sontag, editors, Hybrid Systems III, volume 1066 of
LNCS, pages 13-40. Springer-Verlag, 1996.

Yonit Kesten, Zohar Manna, and Amir Pnueli. Verification
of clocked and hybrid systems. In Grzegorz Rozenberg and
Frits W. Vaandrager, editors, Lectures on Embedded Systems,
volume 1494 of LNCS Tutorial, pages 4-73. Springer, Heidel-
berg, 1998.

15

[MP95]

[Sip03]
[SSM03)
[SSMO@]
[SSRBOO]
[SSS+03]
[SSS+05]

[SSSMO05]

[ZSMO04a)

Zohar Manna and Amir Pnueli. Clocked transition systems. In
Proc. of the Intl. Logic and Software Engineering Workshop, Au-
gust 1995. Beijing, China.

Henny B. Sipma. A formal model for cross-cutting modular tran-
sition systems. In Gary Leavens and Curtis Clifton, editors,
Proceedings of the Workshop on Foundations of Aspect-Oriented
Languages (FOAL’03), pages 9-16, 2003.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna.
Petri net analysis using invariant generation. In Nachum Der-
schowitz, editor, Verification: Theory and Practice, volume 2772
of LNCS, pages 682-701, Taurmina, Italy, 2003. Springer Verlag.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna.
Non-linear loop invariant generation using Grobner bases,. In
31" ACM Symp. Princ. of Prog. Lang., pages 318-329, Venice,
Italy, January 2004.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank
Buschmann. Pattern-Oriented Software Architecture. Patterns
for Concurrent and Networked Objects, Volume 2. Wiley & Sons,
New York, 2000.

César Sanchez, Sriram Sankaranarayanan, Henny B. Sipma,
Ting Zhang, David L. Dill, and Zohar Manna. Event correlation:
Language and semantics. In Embedded Software (EMSOFT), vol-
ume 2855 of LNCS, pages 323-339, 2003.

César Sanchez, Henny B. Sipma, Venkita Subramonian, Christo-
pher Gill, and Zohar Manna. Thread allocation protocols for
distributed and real-time and embedded systems. 2005. Submit-
ted. '

César Sanchez, Henny B. Sipma, Matteo Slanina, and Zohar
Manna. Final semantics for event-pattern reactive programs. In
CALCO’05, 2005. To appear.

Ting Zhang, Henny Sipma, and Zohar Manna. Decision proce-
dures for recursive data structures with integer constraints. In
the 2" International Joint Conference on Automated Reasoning
(IJCAR’04), volume 3097 of LNCS, pages 152-167. Springer-
Verlag, 2004. '

16

[ZSM04b] Ting Zhang, Henny Sipma, and Zohar Manna. Term algebras

[ZSMO05]

with length function and bounded quantifier alternation. In the
17t International Conference on Theorem Proving in Higher
Order Logics (TPHOLs’04), volume 3223 of LNCS, pages 321-
336. Springer-Verlag, 2004.

Ting Zhang, Henny Sipma, and Zohar Manna. Decision proce-
dures for queues with integer constraints, 2005. Submitted.

17

Form Approved
REPORT DOCUMENTATION PAGE . OMB No. 0704-0188
Public reporting burden forthns collecbon of inf tion is estimated to ge 1 hour per resporise, mcludng the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Departrent of Defense, Washlngton Headquarters Services, Directorate for Informabon Opembons and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Ardington, VA 22202-
4302. Respondents should be awars that notwithstanding any other provision of law, no p shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control nuﬂer. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED ((From - To)
4-29-2005 Final Technical 08-01-2001 to 01-31-2005
4. TITLE AND SUBTITLE 5a, CONTRACT NUMBER
Next Generation Software Development 5b. GRANT NUMBER \
DAAD19-01-1- 0723
5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) §d. PROJECT NUMBER
I |
[
Zohar Manna Se. TASK NUMBER
§f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Stanford University
Computer Science Department
Stanford, CA 94305-9515
|
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SMNSOWMONITOﬁ'S ACRONYM(S)
Mary N. Jackson ONRRO Seattle
Department of the Army
Research Triangle Park 11. SPONSOR/MONITOR’S REPORT
P.0. Box 12211 _ NUMBER(S)
Research Triangle Pk, NC 27709 41925. /- Q /

12. DISTRIBUTION / AVAILABILITY STATEMENT

;p\peroueﬁ for Pulblic (elease y &igi»rl\owchon \,\m\imi-Leo\

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Under this grant we have studied the development of a scientifically sound basis for software development that builds on widely used
pragmatic methods but is firmly grounded in well-established format domains such as first-order logic and automata theory. To be
sufficiently expressive for software systems, the work has focused on methods applicable to infinite-state systems. Traditionally methods
for infinite-state systems have been expensive, because they were mainly deductive and thus required guidance by users who were both
experts in the application domain and in the verification methodology. Our research has been directed at algorithmic-deductive techniques,
including static and runtime analysis techniques that separate the combinatorial reasoning from reasoning about the data. These methods
often limit user input to providing abstract system models and application-level guidance, making the interaction more natural to software
developers. Constructed proofs hide low-level details; instead, they reason at the most appropriate level of abstraction with respect to the
properties to be proved. This characteristic of proofs makes them suitable as system documentation that can evolve with the system. To
ensure well-defined semantics, computational models were developed for new computing paradigms, including aspects of publish-
subscribe systems and middleware design patterns.

16. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
Unclassified OF ABSTRACT OF PAGES Zohar Manna[
a. REPORT b. ABSTRACT ¢. THIS PAGE 19b. TELEPHONE NUMBER (include area
code)
17 (650) 723-4364

